NEW COMPLEXES OF Mn(II), Co(II), Ni(II) AND Cu(II) WITH 2,2'- OR 2,4'-BIPYRIDINE AND FORMATES Synthesis, thermal and other properties

D. Czakis-Sulikowska^{*}, J. Radwańska-Doczekalska, A. Czylkowska, M. Markiewicz and A. Broniarczyk

Institute of General and Ecological Chemistry, Technical University of Łódź, Łódź, Poland

New mixed-ligand complexes with empirical formulae: $Mn(2-bpy)_{1.5}L_2 \cdot 2H_2O$, $M(2-bpy)_2L_2 \cdot 3H_2O$ (M(II)=Co, Cu), $Ni(2-bpy)_3L_2 \cdot 4H_2O$ and $M(2,4'-bpy)_2L_2 \cdot 2H_2O$ (where 2-bpy=2,2'-bipyridine, 2,4'-bpy=2,4'-bipyridine; $L=HCOO^-$) have been obtained in pure solid-state. The complexes were characterized by chemical and elemental analysis, IR and VIS spectroscopy, conductivity (in methanol and dimethylsulfoxide). The way of metal-ligand coordination discussed. The formate and 2,4'-bpy act as monodentate ligands and 2-bpy as chelate ligand. The new complexes with ligand isomerism were identified. During heating the complexes lose water molecules in one or two steps. Thermal decomposition after dehydration is multistage and yields corresponding metal oxides as final products. A coupled TG-MS system was used to analysis principal volatile thermal decomposition (or fragmentation) products of Ni(2,4'-bpy)_2(HCOO)_2 \cdot 2H_2O under dynamic air or argon atmosphere.

Keywords: bipyridine formate complexes, TG-MS data, thermal decomposition, transition-metal complexes, VIS-IR spectra

Introduction

The synthesis and characterization of bipyridine metal complexes attract much attention during the many years due to their various applications [1]. As an example: in molecular separation [2, 3], catalysis [4, 5], storage of solar energy [6, 7]. Many metal complexes containing bipyridine isomers are of interest from biological and material chemistry [5, 8–10]. Mixed ligand complexes of metal containing bipyridine isomers and biologically active carboxylates are especially attractive [11–17]. Several studies of transition metal(II) complexes with formates have been reported [18–20]. Very little is known on mixed ligand complexes of d^n metal with bipyridine isomers and formates. Hathaway *et al.* [21] prepared complexes with formulae:

 $Cu(2-bpy)_2(HCOO)_2\cdot 4H_2O$ [$Cu(2-bpy)_2(HCOO)$]·ClO₄

where 2-bpy=2,2'-bipyridine.

Also the complex

[Cu(2-bpy)₂(HCOO)₂]BF₄·0.5H₂O

was described [22]. We have recently reported [23] the synthesis and characterization of 4,4'-bipyridineformato complexes of M(II) ions (M(II)=Mn, Co, Ni, Cu, Zn and Cd). Herein, we describe the synthesis of mixed ligand complexes of Mn(II), Co(II), Ni(II) and Cu(II) with 2,2'-bipyridine or 2,4'-bipyridine (2,4'-bpy) and formates in the solid-state and their physico-chemical properties. The obtained mixedligand compounds were characterized by chemical and elemental analysis, molar conductivity investigations, IR and VIS spectra (for complexes of Co(II), Ni(II), Cu(II)) and thermal decomposition in air. A coupled TG-MS system was used to investigation of the principal volatile products of thermal decomposition or fragmentation of Ni(2,4'-bpy)₂(HCOO)₂·2H₂O complex under dynamic air or argon atmosphere.

Experimental

Materials

2,2'-Bipyridine, 2,4'-bipyridine, HCOOH, manganese powder, dimethylsulfoxide (DMSO), dimethylformamide (DMF) and methanol (MeOH) (anhydrous) p.a. were obtained from Aldrich and Lab-Scan, respectively. Water solutions of $M(\text{HCOO})_2$ (M(II)=Co, Ni, Cu) were prepared following: to 20 mL water solution of HCOOH (60 mmol) freshly precipitated carbonates of metal(II) in ca. stoichiometric ratio were slowly added with stirring and heating. Water solution of Mn(HCOO)₂ was prepared by dissolving pure Mn in 20 mL of 2 mol L⁻¹ HCOOH (warm) in ca. equimolar ratio. The solution contained 1 mL of 10% v/v hydroxylamine (to stop

^{*} Author for correspondence: dczakis@p.lodz.pl

the oxidation process of Mn(II)). The contents of M(II) ions in obtained solutions were complexometrically (EDTA) determined. Other chemicals were p.a. products from POCh-Gliwice.

Complex synthesis

2-Bpy complexes of Mn(II), Co(II), Ni(II) and Cu(II) prepared by mixing 12.8 mmol of 2-bpy in 96% v/v ethanol (26 mL) with the solution of 6.4 mmol metal formates in 24 mL of water. The mixture was heated up to 80°C for ca. 30 min and allowed to cool. During several days the compounds crystallized. The obtained compounds were filtered off; washed with 40% v/v ethanol and then with EtOH and Et₂O mixture (1:1). The products were air dried at room temperature.

2,4'-Bpy complexes: H₂O solution (14.7 mL) of 2,4'-bpy (12.9 mmol) containing 0.2 mL of 96% v/v EtOH was added to water solutions of M(HCOO)₂ (4.3 mmol in 15 mL). The resulting mixture of molar ratio M:2,4'-bpy=1:3 was heated to 80°C ca. 30 min and then allowed to cool. The small crystalline products were obtained after 1–2 days at room temperature. The products were filtered, washed with small portions of water next with ethanol and diethyl ether mixture (1:1) and dried in open air.

Methods

Carbon, hydrogen and nitrogen analysis were performed with a Carbo-Erba analyser with V_2O_5 as an oxidizing agent. Metal content in mineralized sample determined by EDTA titration. IR spectra were recorded with a Shimadzu spectrometer (4000–400 cm⁻¹) using KBr pellets. The VIS spectra were obtained in Nujol mulls; they recorded on a Specord M40 spectrometer $(30000-12000 \text{ cm}^{-1})$. Molar conductances were measured on a conductometer of the OK-102/1 type equipped with an OK 902 electrode at 25±0.5°C. Molar conductivity of complexes was measured using $1.0 \cdot 10^{-3} \text{ mol L}^{-1}$ solutions in MeOH and DMSO; for Cu(II) compounds also in DMF.

Thermal studies were performed on a derivatograph Q-1500 at a heating rate 10°C min⁻¹ under a static air atmosphere. α -Al₂O₃ served as the reference; mass sample of 100 mg. The analysis of some solid decomposition products was performed using TG and DTG curves and supported by X-ray diffractograms (diffractometer D-5000, CuK_{α} , Ni filtered radiation). The measurements were made in the $2\theta=2-80^{\circ}$ range. Obtained X-ray diffractometric results were analysed using the Powder Diffraction File [24]. The system TG-MS was used to analysis of principal volatile products of pyrolysis and fragmentation processes of complex Ni(2,4'-bpy)₂(HCOO)₂·2H₂O in air and argon atmosphere (flow rate $1 L h^{-1}$). Data were performed by on line connected computer system with commercial (TG/DTA-SETSYS 16/18 apparatus, mass spectrometer QMS-422, model ThermoStar from Balzers) software, an ion source temperature of ca. 150°C by using 70 eV electron impact ionization. All thermal investigations were carried between 20–1000°C at the heating rate of 10°C min⁻¹. The m/z values are given based on: 1 H, 12 C, 14 N, 16 O (additionally 13 C and 18 O for CO₂).

Results and discussion

Results of the elemental and chemical analysis are listed in Table 1. The complexes are small crystalline

Table 1 Analytical data, molar conductivity Λ_M in MeOH and DMSO (concentration $1 \cdot 10^{-3}$ mol L^{-1})

No	Complex	1	Analysis: found	l (calculated)/%	6	$\Lambda_{\rm M}/\Omega^{-1}$ c	$cm^2 mol^{-1}$
INO.	(colour)	М	С	Ν	Н	MeOH	DMSO
Ι	Mn(2-bpy) _{1.5} (HCOO) ₂ ·2H ₂ O (yellow)	13.09 (13.23)	49.68 (49.17)	9.84 (10.12)	4.22 (4.37)	76.0	31.1
Π	Co(2-bpy) ₂ (HCOO) ₂ ·3H ₂ O (orange)	11.33 (11.43)	51.91 (51.27)	10.56 (10.87)	4.50 (4.69)	104.0	27.3
III	Ni(2-bpy) ₃ (HCOO) ₂ ·4H ₂ O (blue)	8.64 (8.52)	56.02 (55.75)	11.75 (12.19)	4.79 (4.97)	165.1	34.6
IV	Cu(2-bpy) ₂ (HCOO) ₂ ·3H ₂ O (blue)	12.30 (12.22)	51.01 (50.82)	10.35 (10.77)	4.51 (4.65)	75.3	20.8
V	Mn(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O (yellow)	11.21 (11.13)	53.92 (53.56)	11.61 (11.36)	4.37 (4.49)	66.2	29.7
VI	Co(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O (pink)	11.47 (11.85)	53.70 (53.13)	11.26 (11.26)	4.37 (4.46)	64.6	24.2
VII	Ni(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O (pink)	12.05 (11.81)	53.67 (53.15)	11.73 (11.27)	4.38 (4.46)	58.1	15.4
VIII	Cu(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O (blue)	12.88 (12.66)	53.01 (52.64)	11.52 (11.16)	4.31 (4.42)	34.3	10.2

solids. The analytical data indicate, in general, 1:2:2 (M:bpy:HCOO⁻) stoichiometry. Only Mn(II) and Ni(II) with 2-bpy were obtained as

and

$Mn(2-bpy)_{1.5}(HCOO)_2 \cdot 2H_2O$

Ni(2-bpy)₃(HCOO)₂·4H₂O

2,2'-Bipyridine complexes are hydrates with different degree of hydration. The complexes with 2,4'-bpy were prepared as dihydrates. In solid state all complexes are stable in air. The compounds dissolved fairly in H₂O, MeOH, DMSO, decompose in aqueous acids and alkali and are insoluble in most organic solvents (CCl₄, CH₃Cl, C₂H₅OH). The observed molar conductivities values in MeOH and DMSO are given in Table 1. The high molar conductivity value observed for the Ni(2-bpy)₃(HCOO)₂·4H₂O in MeOH $(165.1 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1})$ feel into the range expected for 1:2 electrolytes [25]. The remaining complexes in MeOH have intermediate behaviour between nonand 1:1 electrolytes except complex II, which is 1:1 electrolyte. Also Λ_M for complexes I–VII in DMSO (Table 1) and IV in DMF (16.9 Ω^{-1} cm² mol⁻¹) solutions corresponded intermediate those non- and 1:1 electrolytes. The low molar conductivity values indithe non-electrolytic nature cate of $Cu(2,4'-bpy)_2(HCOO)_2 \cdot 2H_2O$ in DMSO $(10.2 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1})$ and DMF $(9.0 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1})$.

Electronic and IR spectra

The spectra in VIS region of the cobalt(II) and nickel(II) complexes are all consistent with a distorted octahedral environment around metal atom (for these compounds chromophores have been indicated) [26]. We ascribe the observed band in the cobalt(II) complexes to the following transition: ${}^{4}T_{1g}(P) \leftarrow {}^{4}T_{1g}(F)$. The calculated values of $\overline{\nu}_{calcd}$ by the rule of average environment (RAE) [26] for ${}^{4}T_{1g}(P)$ are comparable with experimental \overline{v}_{exp} , which indicate the following chromofores in the solid complexes CoN4O2 $(\overline{v}_{exp.} 21000 \text{ cm}^{-1}, \overline{v}_{calcd} 21130 \text{ cm}^{-1})$ for compound II and $\text{CoN}'_2\text{O}_2\text{O}'_2$ ($\overline{\nu}_{\text{exp.}}$ 20250 cm⁻¹, $\overline{\nu}_{\text{calcd}}$ 20260 cm⁻¹) in case VI (where N= from 2-bpy, N'=(4')N from 2,4'-bpy, O=from monodentate carboxylate groups, *O*'=from water. The ${}^{4}A_{2g} \leftarrow {}^{4}T_{1g}(F)$ band has been obfor the served only complex $Co(2,4'-bpy)_2(HCOO)_2 \cdot 2H_2O$. The ligand field spectra of nickel(II) compounds were observed at $\overline{v}_{exp.}$ 19000 cm⁻¹ for III and $\overline{v}_{exp.}$ 15000 cm⁻¹ for VII, it is assigned to the ${}^{3}T_{1g}(F) \leftarrow {}^{3}A_{2g}$ transition. The comparison of the values of \overline{v}_{calcd} for this transition with \overline{v}_{exp} , indicates that the following chromophores are probably presented in solid compounds: NiN₆ in III

 $(\overline{v}_{calcd} 19200 \text{ cm}^{-1})$ and NiN'₂O₂O'₂ in **VIII** $(\overline{v}_{calcd} 15600 \text{ cm}^{-1})$. The complex **VII** exhibits also band at 12400 cm⁻¹ (¹E_g \leftarrow ³A_{2g}). The electronic spectra of Cu(II) complexes have similar profiles. They exhibit one broad ligand field band at: 15250 cm⁻¹ for **IV** and 15000 cm⁻¹ for **VIII**. The band can be attributed to the ²E_g \leftarrow ²B_{1g}, ²B_{2g} \leftarrow ²B_{1g}, ²A_{1g} \leftarrow ²B_{1g} transitions, in which the three levels are close so that they are not resolved in the VIS spectra. The position of this band suggest pseudooctahedral geometry (probably compressed rhombic-octahedral) in the copper complex [27].

For consistency, only IR fundamental vibration modes of 2-bpy, 2,4'-bpy and OCO groups for obtained compounds are listed in Tables 2-3. The IR spectrum of free 2-bpy and 2,4'-bpy owing to complex formation. The bands $v_{CC,CN,CC_{rr}}$ (symmetry A₁) and $v_{CN,CC}$ (symmetry B₁) for 2-bpy complexes appear at 1602.7-1595.0 and 1570.0-1559.3 cm⁻¹, respectively. These bands are shifted towards higher frequencies in comparison to free 2-bpy [28]. In all complexes, the pyridine 'breathing' mode shift also to higher wave number about 29.3–23.5 cm⁻¹. The $\gamma_{\rm CH}$ out-of-plane deformation modes (in free 2-bpy are observed at 753 cm⁻¹) shift by ca. 30.8–16.5 cm⁻¹ to higher frequency, also weak satellite of this band (at 738 cm⁻¹) gains intensity and is strongly split away from parent [29]. In summary, the 2-bpy behaves as bidentate ligand with the formation 2,2'-bipyridine chelate complexes [29]. Due to formation of complexes with metal ions, IR spectrum of 2,4'-bpy undergoes a change only in the region of the ring vibration $\nu_{_{CC,CN,CC_{ir}}},\,\nu_{_{CN,CC}}$ and ring 'breathing' modes of 4-substituted pyridine (4-sub) (Table 2) [30]. These observations permit to presume that 2,4'-bpy coordinates via the least hindered (4')N atom as a monodentate ligand [31].

The IR spectra of 2-bpy complexes show asymmetric $v_{as(OCO)}$ and symmetric $v_{s(OCO)}$ vibrations of OCO group in the range 1639.1-1612.2 and 1352.0–1313.4 cm⁻¹, respectively (Table 3). Comparison of these bands with those of HCOONa shows that $v_{as(OCO)}$ are shifted to higher and $v_{s(OCO)}$ to lower frequencies. The separation values Δv of $v_{as(OCO)}$ and $v_{s(OCO)}$ in the IR spectra of these complexes are higher than those for the sodium salt ($\Delta v=240 \text{ cm}^{-1}$ [32]). The region of frequencies of these bands and separation modes indicate that the carboxylate groups act probably as monodentate formate groups in the obtained 2-bpy complexes [33-35]. However conduc-VIS data tivity and suggest, that in $Ni(2-bpy)_3(HCOO)_2 \cdot 4H_2O$ complex carboxylate groups act as 'pseudomonodentate' ligand in results the interaction of the formate ions and water molecules in solid-state of Ni(2-bpy)₃(HCOO)₂·4H₂O. The $v_{s(OCO)}$ for all complexes and bands $v_{as(OCO)}$ for Co(II)

CZAKIS-SULIKOWSKA et al.

			2-bpy o	complexes	
Compound		$v_{\rm CC,CN,CC_{ir}}^{a}$	$\nu_{CN,CC}{}^{b}$	Ring 'breathing'	γсн
2-bpy [28]		1579	1553	991	753 738 sh
Mn(2-bpy) _{1.5} (HCOO) ₂ ·2H ₂ O		1602.7 1598.2	1570.0 1560.0 sh	1015.5	770.5 737.7
Co(2-bpy) ₂ (HCOO) ₂ ·3H ₂ O		1598.2	1560.0 sh	1019.3	776.3 737.7
Ni(2-bpy) ₃ (HCOO) ₂ ·4H ₂ O		1598.0 1596.9	1559.3	1020.3	783.8 738.7
Cu(2-bpy) ₂ (HCOO) ₂ ·3H ₂ O		1595.0	1560.3	1014.5	769.5 731.0
_		2,	4'-bpy complex	es	
Compound	$\begin{array}{c} \nu_{\rm CC,CN,CC_{ir}}^{}^{a}\\ 4 sub \end{array}$	$v_{\rm CC,CN,CC_{ir}}^{a}$ 2 sub	$v_{CN,CC}^{b}$ 4 sub	v _{cn,cc} 4 sub	Ring 'breathing'
2,4'-bpy [30]	1595	1586	1575	1405	990 sh
Mn(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	1609.5	1585.0	1550.0	1415.7	1010.6
Co(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	1611.4	1585.0	1550.0	1414.7	1014.5
Ni(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	1613.3	1585.0	1558.0	1416.6	1017.4
Cu(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	1616.2	1585.0 sh	1554.5	1417.9	1026.1

Table 2 Princip	nal IR	bands for	2-bpv	and 2.4	'-bpv	in free	ligand	and their	complexes.	(cm^{-1}))
I GOIC # I IIIIOI	pui iic	oundo ioi	= op,	ana 2, 1	UP,	111 1100	inguina	and then	comprenes,	(0111	1

ir – inter ring, a – A_1 symmetry, b – B_1 symmetry, γ_{CH} – out-of-plane, sh – shoulder

complex are splitted into doublet. From here is probable that non-completely equivalent bonds between M(II) and carboxylate groups of the formate ligands exist [33]. The bands $\pi_{\text{CH}}+\rho_{\text{r(OCO)}}$ in complexes appear at 1386.7–1376.1 cm⁻¹. In case of complexes $M(2,4'\text{-bpy})_2(\text{HCOO})_2\cdot 2\text{H}_2\text{O}$ (where M(II)=Co, Ni) carboxylate groups are bonded as monodentate lig-

ands. The $v_{as(OCO)}$ and $v_{s(OCO)}$ bands in these complexes are not splitted (Table 3).

 $\begin{array}{cccc} The & frequency & \nu_{as(OCO)} & for \\ Mn(2,4'\text{-bpy})_2(HCOO)_2\cdot 2H_2O \text{ is superimposed by the} \\ absorption & of & 2,4'\text{-bpy}; & also & in \\ Cu(2,4'\text{-bpy})_2(HCOO)_2\cdot 2H_2O & the & band & \nu_{s(OCO)} & is \\ masked by the absorption $\pi_{CH}+\rho_{r(OCO)}$. Thus, it is dif-$

Table 3 Principal IR bands for OCO⁻ groups in free ligand and obtained complexes

Compound	V _{as(OCO)}	V _{s(OCO)}	$\pi_{CH} + \rho_{r(OCO)}$	$\Delta v = v_{as} - v_s$
HCOONa [32]	1597	1357	1389	240
Compound		2-bpy cc	omplexes	
Mn(2-bpy) _{1.5} (HCOO) ₂ ·2H ₂ O	1612.2	1349.1 1326.0	1384.8 1376.1	263.1 286.2
Co(2-bpy) ₂ (HCOO) ₂ ·3H ₂ O	1639.1 1631.1	1352.0 1344.0	1379.0	287.1 287.1
Ni(2-bpy) ₃ (HCOO) ₂ ·4H ₂ O	1631.7	1345.3 1313.4	1380.9	286.4 318.3
Cu(2-bpy) ₂ (HCOO) ₂ ·3H ₂ O	1631.7	1348.1 1338.5 1319.2	1386.7	283.6 293.2 312.5
Compound		2,4'-bpy o	complexes	
Mn(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	*	1348.1	1370.0	_
Co(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	1625.0	1344.3	1362.6	280.7
Ni(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	1629.7	1350.1	1364.6	279.6
Cu(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	1631.7	**	1369.4	_

*overlaid by 2,4'- absorption; **overlaid by π_{CH} + $\rho_{r(OCO)}$; pd – poorly resolved doublet

ferent to discuss the nature of metal–formate bonds in these complexes. The IR spectra of the all prepared complexes exhibit broad absorption bands in the range ca. 3500–3400 cm⁻¹, confirming the presence of water molecules in these compounds.

Thermal studies

Results of TG, DTG and DTA analysis are presented in Table 4. Because the complexes are hydrated, as expected, the first mass losses can be assigned to water evaluation in I-III, V-VIII complexes. The release of water molecules in these complexes is well-defined step which can clearly be observed on the thermal curves. The dehydration occurs in endothermic steps. In the case of complexes I, III and VII elimination of all water molecules in one stage takes place. Co(2-bpy)₂(HCOO)₂·3H₂O loses water molecules in two steps. For compounds V, VI and VIII the lost stage of dehydration is connected with total or partial elimination of bipyridine. The H₂O evaluation (the temperatures of the first peak in DTG curves) decrease in the sequence: Cu (125°C, elimination of 3 mole of 0.75 mole 2-bpy)>Ni H₂O and (120°C)>Mn $(95^{\circ}C) \approx Co$ (95°C) for 2-bpy complexes; Ni(II) (160°C)>Mn (150°C)>Co (125°C)>Cu (105°C) for 2,4'-bpy complexes. The thermal analytical curves of

> Mn(2-bpy)_{1.5}(HCOO)₂·2H₂O Mn(2,4'-bpy)₂(HCOO)₂·2H₂O

and

Co(2-bpy)₂(HCOO)₂·3H₂O Ni(2-bpy)₃(HCOO)₂·4H₂O

complexes, as an example are presented in Figs 1 and 2. The thermal decompositions of anhydrous compounds are different. Mn(2-bpy)_{1.5}(HCOO)₂·2H₂O decompose progressively. In temperature ranges: 115-220 and 220–250°C formation of Mn(2-bpy)(HCOO)₂ and $Mn(2-bpy)_{0.5}(HCOO)_2$ takes place, respectively. Further mass loss is observed within temperature 250-350°C. It is attributed to the loss of remaining 2-bpy, decomposition of formates and formation of Mn₂O₃. Formation of Mn₃O₄ begins above 900°C. For the anhydrous complexes Co(2-bpy)₂(HCOO)₂ and Ni(2-bpy)₃(HCOO)₂ the curves show a very rapid mass loss, which is connected with decomposition of organic ligands and the formation of Co₃O₄ (130–420°C) and NiO (150–460°C) via traces of ca. 2% organic fragments. Above 420 and 460°C pure Co₃O₄ and NiO are identified. Figure 3 presents X-ray diffraction patterns of the sinters of complexes II and III heated up to 420 and 460°C, respectively. The intermediate compound

in the temperature range 130-250°C decompose to the CuO+residue organic fragments. In the range 250-700°C mixture of CuO+Cu₂O forms. In the sinter of IV heated up 710°C these compounds are observed (Fig. 4). On temperature elevation intermediate compound Mn(2,4'-bpy)₂(HCOO)₂·1/2H₂O forms Mn₃O₄ via Mn(HCOO)₂ and Mn₂O₃. Monohydrate complex Co(2,4'-bpy)₂(HCOO)₂·H₂O in the temperature range: 150–265°C decompose to Co(HCOO)₂; at 420°C pure Co₃O₄ occurs. Above 800°C CoO is formed. The anhydrous slowly complex Ni(2,4'-bpy)₂(HCOO)₂ eliminates 1 mole of 2,4'-bpy

Fig. 1 Thermoanalytical curves of

 $a - Mn(2-bpy)_{1.5}(HCOO)_2 \cdot 2H_2O$ and

 $b - Mn(2,4'-bpy)_2(HCOO)_2 \cdot 2H_2O$; sample mass: 100 mg

Fig. 2 Thermoanalytical curves of $a - Co(2-bpy)_2(HCOO)_2 \cdot 3H_2O$ and

 $b - Ni(2-bpy)_3(HCOO)_2 \cdot 4H_2O$; sample mass: 100 mg

		Ranges of		Mass]	loss/%	
N0.	Complex	decomposition/°C	D1A peak/ C	found	calc.	Intermediates and final solid products
		60–115 115–220	105 endo	8.5 18.0	8.68 18.80	Mn(2-bpy) _{1.5} (HCOO) ₂ Mn(2-bpv)(HCOO),
Ι	$Mn(2-bpy)_{1.5}(HCOO)_2 \cdot 2H_2O$	220-250	240 endo	18.0	18.80	$Mn(2-bpy)_{0.5}(HCOO)_2$
		250-350	330 exo	36.5	34.70	Mn_2O_3
		>900		1.0	0.64	$\mathrm{Mn}_3\mathrm{O}_4$
		50 - 100	95 endo	7.0	6.99	$Co(2-bpy)_2(HCOO)_2 \cdot H_2O$
П	Co(2-hnv),(HCOO),:3H,O	100 - 130	105 endo sh	3.5	3.50	$Co(2-bpy)_2(HCOO)_2$
=		130-420	200, 395 exo	74.0	73.94	pure Co ₃ O ₄ **
		006<	910 endo	C.1	1.05	COU (SIOWIY)
		60 - 150	140 endo	10.5	10.45	Ni(2-bpy) ₃ (HCOO) ₂
III	Ni(2-bpy) ₃ (HCOO) ₂ ·4H ₂ O	150-460	240 exo 360 endo 420 evo	78.0	78.71	pure NiO**
			200 2000, 120 200			
i		60-130	85, 118 endo	$\frac{33.5}{2}$	32.92	$Cu(2-bpy)_{1.25}(HCOO)_2$
\mathbf{N}	Cu(2-bpy) ₂ (HCOO) ₂ :3H ₂ O	130-250	215 endo	50.5	51.78	CuO**
		250-700	$\sim 400 exo br$			mixture of CuO+Cu ₂ O
		118 - 160	160 endo	5.0	5.48	Mn(2,4'-bpy) ₂ (HCOO) ₂ ·1/2H ₂ O
Λ	Mn(2.4'-hnv),(HCOO),-2H,O	160 - 295	190, 285 endo	65.0	65.14	$Mn(HCOO)_2$
•		295–500	355 exo, 440 exo br	14.0	13.79	pure $Mn_2O_3^{**}$
		>900	960 endo	~ 0.5	0.14	Mn_3O_4
		100 - 150	140 endo	4.0	3.62	$Co(2,4"-bpy)_2(HCOO)_2 \cdot H_2O$
	Co(2-4'_hnv),(HCOO),.2H,O	150 - 265	200 exo, 250 endo	66.0	66.42	$Co(HCOO)_2^*$
		265-420	320, 420 exo	13.5	13.82	Co_3O_4
		>800	920 endo	~ 1.0	1.08	CoO (slowly)
		140-200	170 endo	6.5	7.24	$Ni(2,4'-bpy)_2(HCOO)_2$
ΠΛ	Ni(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	200–250	230 exo, 250 endo	32.0	31.42	Ni(2,4'-bpy)(HCOO) ₂ *
		250-450	290 endo, 440 exo	46.5	46.31	pure NiO***
		85-115	115 endo	3.6	3.59	$Cu(2,4"-bpy)_2(HCOO)_2 \cdot H_2O$
		115 - 160	138 endo	19.0	19.15	$Cu(2,4'-bpy)_{1.5}(HCOO)_2$
VIII	Cu(2,4'-bpy) ₂ (HCOO) ₂ ·2H ₂ O	160 - 400	215 endo sh, 280 endo	62.0	61.41	pure CuO**
			320 exo, 400 exo br			
		>750				mixture of CuO+Cu ₂ O

CZAKIS-SULIKOWSKA et al.

Fig. 3 X-ray diffraction patterns of decomposition product of a - Co(2-bpy)₂(HCOO)₂·3H₂O heated up to 420°C and b - Ni(2-bpy)₃(HCOO)₂·4H₂O heated up to 460°C

Fig. 4 X-ray diffraction patterns of decomposition product of Cu(2-bpy)₂(HCOO)₂·3H₂O heated up to 710°C

and decompose to Ni(2,4'-bpy)(HCOO)₂. In the range 250–450°C was forming pure NiO (via mixture NiO+ca. 1.5% Ni). Similar mixture was obtained during pyrolysis of Ni($C_{17}H_{10}O_4$)·H₂O [36]. For intermediate compound Cu(2,4'-bpy)_{1.5}(HCOO)₂ in the interval of temperature 160–400°C the deamination overlaps the process of full decomposition of formates. The products of this stage of pyrolysis are CuO with ca. 1.5% organic residue. Futher heating causes oxidation of the organic residue and result is pure CuO, which converts to mixture CuO+Cu₂O. The

Fig. 5 TG curve and ion current detected by the MS for Ni(2,4'-bpy)₂(HCOO)₂·2H₂O; a – in air, mass sample 5.35 mg, m/z: 1–12; 2–18; 3–30; 4–44 with sensitivities of: E-12, E-09, E-11, E-10 A, respectively; b – in argon, mass sample 9.85 mg, m/z: 1–12; 2–18; 3–28; 4–44 with sensitivities of: E-11, E-09, E-10, E-09 A, respectively

DTA curves are mixtures of several endo and exo peaks. Very strong and broad exothermic effects are as usually [37] caused by the oxidation of organic fragments observed with maxima at ca.: 330°C (I), 395°C (II), 420°C (III), 400°C (IV), 355 and 440°C (V), 320 and 420°C (VI), 440°C (VII), 320 and 400°C (VIII).

Mass spectrometric thermal analysis

In this paper a coupled TG-MS system was used to study of gaseous species evolved during dynamic thermal decomposition (or fragmentation) processes only of Ni(2,4'-bpy)₂(HCOO)₂·2H₂O in air and argon atmosphere. Ion current intensities were noted with sensitivity between E-9–E-13. Figure 5 (as an example) presents ion currents and TG curves for same m/zdetected by the mass spectrometer v/s temperature for this complex in air and argon atmosphere. Complex Ni(2,4'-bpy)₂(HCOO)₂·2H₂O in inert atmosphere presents the higher thermostability (the mass losses starting at ca. 180°C) than in air. Generally many signals of ion currents are observed in the ranges: 140-270 and 310-360°C (for air) and between 180–300 and ca. 450°C (for argon). In air atmosphere first MS peak for coordination (or crystalline) water occurred at 165°C; maximum rates of H₂O forming during the decomposition of organic ligands at 254 and 326°C are observed. One broad maximum of ion current (218-295°C) corresponding elimination of H₂O appeared in the case of argon atmosphere. The ion signal intensities of CO_2 (m/z 44) as well as ${}^{13}C^{16}O_2$ and ${}^{12}C^{18}O^{16}O$ (*m*/*z* 45 and 46, respectively) have centers at: 218, 244 and 325°C (in air) and at 251°C (in argon). A low intensity of ion currents were detected for NO⁺ (or CH_2O^+) at 324 (in air) and 280°C (in argon). Minima of ion current correspond to O_2 from air atmosphere at 248 and 333°C are observed. In argon maxima rates with m/z 28 (correspond to CO) at 253 and 285°C exist. Also peaks for fragments with m/z 12, 15, 17 were appeared.

Conclusions

The new mixed ligand complexes with empirical formulae:

where M(II)=Co, Cu

Ni(2-bpy)₃(HCOO)₂·4H₂O M(2,4'-bpy)₂(HCOO)₂·2H₂O

where M(II)=Mn, Co, Ni and Cu – were prepared as small-crystalline compounds. The

 $\begin{array}{l} Mn(2,4"-bpy)_2(HCOO)_2{\cdot}2H_2O\\ Mn(4-bpy)_2(HCOO)_2{\cdot}2H_2O \end{array}$

[23] are new complexes with ligand isomerism. The ligand field spectra of Co(II), Ni(II) and Cu(II) are characteristic of distorted octahedral environment around metal ions. IR data show, that obtained complexes of Co(II), Ni(II) and Cu(II) with 2-bpy and formates are bis 2,2'-bipyridine chelates. The 2,4'-bpy coordinates with title metals(II) via least hindered (4')N atom as a monodentate ligand. The carboxylate groups act as monodentate in all obtained complexes. In the case of major metals(II) with 4,4'-bipyridine and formates the carboxylate ions are bonded as bidentate chelating ligands [23]. The mode of metal-carboxylate coordination probably depends on bipyridine structure [29, 31]. During heating in air the hydrated complexes lose water molecules in one or two steps. Dehydration begins at 50-60°C for complexes with 2-bpy and 85–140°C in case of 2,4'-bpy compounds. Next, generally the compounds lose

2-bpy or 2,4'-bpy in several stages and converted to oxides. The intermediate products formed during the thermal decomposition process:

Co(2-bpy)₂(HCOO)₂·H₂O and Cu(2-bpy)_{1.5}(HCOO)₂

are ligand isomeric with 2,4'-bpy complexes; Ni(2,4'-bpy)(HCOO)₂ is isomeric with 4-bpy compound [23]. Generally, MS data detected during pyrolysis of Ni(2,4'-bpy)₂(HCOO)₂·2H₂O indicate, that major of ion signals are similar in air and argon, only in inert atmosphere profil of CO⁺ with m/z 28 takes place. The principal ion intensities correspond to: C⁺, OH⁺, H₂O⁺, NO⁺, CO⁺₂ as well as ¹³C¹⁶O⁺₂ and ¹²C¹⁶O¹⁸O⁺₂ (m/z 12, 17, 18, 30, 44 as well as 45 and 46, respectively).

References

- 1 Ch. Kaes, A. Katz and M. W. Hasseini, Chem. Rev., 100 (2000) 3553 and refs therein.
- 2 P. Losier and M. J. Zaworotka, Angew. Chem., 35 (1996) 2779.
- 3 M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 116 (1994) 1151.
- 4 T. Venäläinen and T. A. Pakkanen, J. Mol. Catal., 59 (1990) 33.
- 5 Comprehensive Coordination Chemistry from Biology to Nanotechnology, McCleverty and Meyer, 2004.
- 6 K. Kalynusundaram and M. Grátzel, Coord. Chem. Rev., 177 (1998) 347.
- 7 M. D. Ward, C. M. White, F. Barigelletti, N. Armaroli, G. Calogero and L. Flamigui, Coord. Chem. Rev., 171 (1998) 48.
- 8 T. Korzeniak, K. Stadnicka, M. Rams and B. Sieklucka, Inorg. Chem., 43 (2004) 4811.
- 9 M. P. Fitzsimons and K. J. Barton, J. Am. Chem. Soc., 119 (1997) 3379.
- 10 S. Lui and A. D. Hamilton, Bioorg. Med. Chem. Letters, 7 (1997) 1779.
- 11 P. Segl'a, D. Mikloš, P. Olejniková, B. Kaliňáková, D. Hudecová, M. Palicová, J. Švorec, M. Valko, M. Melnic and T. Głowiak, Inorg. Chim. Acta, 357 (2004) 4172.
- 12 L. R. Macgillivray, R. H. Groeneman and J. L. Atwood, J. Am. Chem. Soc., 120 (1998) 2676.
- 13 R. D. Bailey Walsh, M. W. Bradner, S. Fleischman, L. A. Morales, B. Moulton, N. Rodriquez-Hornedo and M. J. Zawarotko, Chem. Com., 1 (2003) 186.
- 14 D. Czakis-Sulikowska, A. Malinowska and A. Łuczak, J. Therm. Anal. Cal., 78 (2004) 461.
- 15 D. Czakis-Sulikowska, J. Radwańska-Doczekalska, A. Czylkowska and J. Gołuchowska, J. Therm. Anal. Cal., 78 (2004) 501.
- 16 R. Carballo, A. Castiňerias, B. Covelo and E. M. Váquez-Lòpez, Polyhedron, 20 (2001) 899.
- 17 R. Carballo, A. Castiňerias, S. Balboa, B. Covelo and J. Niclós, Polyhedron, 21 (2002) 2811.
- 18 T. Vlase, G. Vlase, A. Chiviak and N. Doca, J. Therm. Anal. Cal., 72 (2003) 839 and refs therein.

- 19 E. J. Inger-Stocka and A. Grabowska, J. Thermal Anal., 54 (1998) 118.
- 20 P. C. H. Mitchell, R. P. Holroyd, S. Pouiston, M. Bowker and S. F. Parker, J. Chem. Soc. Faraday Trans., 93 (1997) 2569.
- 21 B. J. Hathaway, I. M. Procter, R. C. Slade and A. A. G. Tomlinson, J. Chem. Soc., 2219 (1969).
- 22 W. Fitzgerald and B. J. Hathaway, J. Chem. Soc. Dalton Trans., 567 (1981).
- 23 D. Czakis-Sulikowska, J. Radwańska-Doczekalska and M. Markiewicz, Polish J. Chem., 77 (2003) 1255.
- 24 Powder Dffraction File. International Center of Diffraction Date. ICPDS-ICBD, 1990. Park Lane Swarthmore.
- 25 W. J. Geary, Coord. Chem. Rev., 7 (1971) 81.
- 26 A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam 1984.
- 27 B. J. Hathaway, J. Chem. Soc. Dalton Trans., (1972) 1196.
- 28 J. S. Strukl and J. L. Walter, Spectrochim. Acta, 27A (1971) 223.
- 29 A. Czylkowska, R. Kruszyński, D. Czakis-Sulikowska and T. J. Bartczak, J. Coord. Chem., (2004).
- 30 C. K. Pearce and D. W. Grosse, Chem. Engin. Data, 15 (1970) 567.

- 31 P. Castan, F. Dahan, S. Wimmer and F. L. Wimmer, J. Chem. Soc. Dalton Trans., (1990) 297.
- 32 B. F. Mentzen, Inorg. Chim. Acta, 43 (1980) 237.
- 33 W. Brzyska and W. Ożga, J. Therm. Anal. Cal., 61 (2000) 135.
- 34 W. Brzyska and W. Ożga, J. Therm. Anal. Cal., 70 (2002) 467 and refs therein.
- 35 R. Kurpiel-Gorgol and W. Brzyska, J. Therm. Anal. Cal., 71 (2003) 539.
- 36 W. Brzyska and A. Juiko, J. Therm. Anal. Cal., 76 (2004) 823.
- 37 H. Olmez, F. Arslan and H. Icbudak, J. Therm. Anal. Cal., 76 (2004) 793.

Received: August 15, 2005 Accepted: October 26, 2005 OnlineFirst: March 29, 2006

DOI: 10.1007/s10973-005-7230-6